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Stochastic Biochemistry: Theme Overview

1.  Stochastic Phenomena: origins and 
consequences.

2.  Single Cell Research.



DNA

mRNA
• mRNA transfer instructions for creating specific 

proteins. Low copy numbers (~0-100/cell).

Transcription

R
eg

ul
at

io
n

protein

Translation

• Proteins build cellular structures, pass cellular 
information and regulate cellular activities. 
Variable copy numbers (~0-100,000/cell).

Origins of Stochasticity:
1)  Small molecular copy numbers

• DNA contains all of the genetic instructions. 
Extremely low copy numbers (~0-5/cell).

The Central Dogma of Molecular Biology



Origins of Stochasticity:
2) Spatial fluctuations of cellular constituents.

Thermal fluctuations will 
lead to randomness in 

times between reactions.



Origins of Stochasticity:
3) Competition of different events.

Different reactions will 
lead to different 
consequences.

Which ever molecule wins 
the race will define the 

reaction.



Origins of Stochasticity:
4) Extrinsic fluctuations.

Changes in temperature, nutrients, radiation, 
chemicals, pressure, etc...

Fluctuations of upstream genes, intercellular 
signals.



Intrinsic versus Extrinsic Noise

• Variability is present and can be measured

Elowitz et al, “Stochastic Gene Expression in a Single Cell”, Science 2002

• Inserted two reporter genes on the chromosome (cfp, yfp)
• Each was controlled by the same promoter
• Expression of cfp shown in green, yfp in red

Low Intrinsic Noise

High Intrinsic Noise



Stochastic Effects Lead to
 Phenotypical Differences

Fingerprints of identical twins
Cc, the first cloned cat and her 

genetic mother, Rainbow

J. Raser and E. O’Shea,  “Noise in Gene Expression: Origins, Consequences, and Control”, Science, 2005  
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Stochastic Phenomena: 
1) Signal Amplification (or damping).

•  Stochastic mean value different from deterministic steady state
•  Noise enhances signal! 

Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, “Stochastic Focusing: Fluctuation-
enhansed sensitivity of intracellular regulation” PNAS 2000

stochastic

deterministic
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Stochastic Phenomena: 
2) Noise Induced Oscillations

Circadian rhythm

Vilar, Kueh, Barkai, Leibler, PNAS 2002

• Oscillations disappear from deterministic model after a small reduction in deg. of repressor
• (Coherence resonance) Regularity of noise induced oscillations can be manipulated 
   by tuning the level of noise [El-Samad, Khammash]

Slide Contributed by Mustafa Khammash



Stochastic Phenomena: 
3) Stochastic Switching

Same genetic code.

Highly infectious 
phenotype.

Harmless 
phenotype.

Same chemical environment.

Random reactions can lead to 
vastly different results!

Munsky, Trinh, Hernday, Khammash, Low, under preparation, 2010



★ What will happen?
★ How frequently?     
★  Why does it happen?
★ Under what conditions?

★ What advantages does it 
provide?

★ How can we prevent it?
★ How can we cause it?

For these systems, we need 
single cell analyses to answer:

The Importance of Single Cell Analyses



Same genetic code.

Highly infectious 
phenotype.

Harmless 
phenotype.

Random reactions can lead to 
vastly different results!

Same chemical environment.

Genetic manipulations make 
it easy to see changes under 

the microscope.

Munsky, Trinh, Hernday, Khammash, Low, under preparation, 2010



Stochastic Biochemistry: Theme Overview

1.  Stochastic Phenomena: origins and 
consequences.

2.  Single Cell Research.



Automated tools

Statistical 
methods

Model Fitting and 
Validation

Synthetic 
Design

Bio-Control

Advances in single 
cell research.



Automated tools
Flow Cytometry and fluorescence 

activated cell sorting

Fluorescence microscopy,
 Muzzey et al, Cell 2009

Single molecule Fluorescence in 
situ Hybridization (FISH)

Raj, Nature Methods 2007 
Time lapse fluorescence 

microscopy 
Cagatay et al, Cell 2009



Automated 
tools to measure 

biological 
behavior

Statistical 
methods to 
represent 

biological data

Techniques 
to fit data and 

validate 
quantitative 

models

Optimized 
design of 
synthetic  
biological 

mechanisms  

New 
experiments with 

controllable 
biological inputs 

Automated tools

Statistical 
methods

Model Fitting and 
Validation

Synthetic 
Design

Bio-Control

Advances in single 
cell research.



Statistical 
methods
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Time lapse fluorescence microscopy Cagatay et al, Cell 2009

Single molecule Fluorescence in 
situ Hybridization (FISH)

Flow Cytometry
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Model Fitting and 
Validation
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Synthetic
Design

Light sensing Bacteria,
Voigt Lab, 2005

Genetic Toggle Switch, 
Kobayashi et al, 2004

Cagatay et al, 
Cell 2009
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Stochastic Biochemistry: Lecture Plan

1) Theoretical Techniques 
(Munsky, Nemenman, Zilman)

2) Experimental Techniques 
(Marrone, Raj, Werner, Voigt)



• Today and Wednesday--Brian Munsky (LANL-CNLS)
‣ Modeling of stochastic effects in systems biology.

• Friday, August 6--Ilya Nemenman (Emory)
‣ Signal processing in biochemical networks: Fourier transforms, central limit 

theorem, linear feedback, and all that.
• Monday, August 9-- Anton Zilman (LANL-CNLS)
‣ History of Stochastic Modeling in Physics.
‣ Advanced stochastic analyses: Fokker Planck equation, Moment Generating 

Functions, etc...

Lecture Plan:
1) Theoretical Techniques



Lecture Plan:
2) Experimental Techniques

• Tuesday, August 3--Arjun Raj (U-Penn)
‣ Measuring cell-to-cell variability with fluorescence microscopy and single 

molecule Fluorescence In Situ Hybridization (FISH) techniques.
• Tuesday, August 3--Babetta Marrone (LANL-B9)
‣ Measuring cell-to-cell variability with flow cytometry and fluorescence 

activated cell sorting.
• Wednesday, August 4--Jim Werner (LANL-CINT)
‣ Fluorescence Correlation Spectroscopy (FCS) and 3 Dimensional Single-

Molecule Tracking 
• Wednesday, August 4--Brian Munsky (LANL-CNLS)
‣ Integrating single cell data and stochastic models.

• Tuesday, August 10--Christopher Voigt (UCSF)
‣ Synthetic Biology



Lecture 1: Modeling of stochastic gene regulation 
(Part 1).



On the menu...
• Today (Part 1)
‣ Solutions for Simple Stochastic Processes (Transcription)

‣ Importance of Population Size

‣ Stochastic Chemical Kinetics

‣ Moment Computations for Linear Propensities

‣ Moment Closures for Non-Linear Propensities

• Wednesday (8:40-10:25) (Part 2)
‣ Monte Carlo Simulation Techniques
✴Gillespie (SSA), Tau leaping, Chemical Langevin (SDEs), Slow Scale SSA. 

‣ Density Computations with Finite State Projection Techniques

‣ Switch and Trajectory Analyses

‣ Examples and software



DNA

mRNA
• mRNA transfer instructions for the creation of 

specific proteins.

Transcription

R
eg

ul
at

io
n

protein

Translation

• Proteins assemble to build cellular structures, 
pass cellular information and regulate cellular 
activities.

The Central Dogma of
 Molecular Biology

• DNA contains all of the genetic instructions.



DNA

mRNA

Transcription

protein

Translation

The Central Dogma of
 Molecular Biology

Deterministic model

• Probability a single mRNA is transcribed in
time dt is krdt.

• Probability a single mRNA is degraded in
time dt is (#mRNA) · γrdt

Stochastic model



Intrinsic Variability in Gene Expression

• Noise propagates through the 
network

• Its amount depends on
‣ # of molecules
‣ stoichiometry
‣ regulation 
‣ ...

• Sometimes it is suppressed; 
other times it is exploited

• Deterministic models are not 
adequate

...

Source of variability at 
cellular level….

•  Small # of molecules 
•  Random events

 

“Intrinsic noise”

Impact of variability

Slide Contributed by Mustafa Khammash



The Markov Description of Biochemical Processes



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

A Jump-Markov description of 
chemical kinetics

[10, 15]

# species 1 # species 2

[11, 15]

[11, 14] [12, 14]

x ∈ Z
N

34



• At any time, the state of the system is defined by its integer 
population vector:

• Reactions are transitions from one state to another:

• These reactions are random, others could have occurred:

A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

x ∈ Z
N

35



A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

Or others...

36



A Jump-Markov description of 
chemical kinetics

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

[11, 16] [12, 16][10, 16][9, 16]

[8, 15]

[8, 14]

[8, 16]

[7, 15]

[7, 14]

[7, 16]

[13, 15]

[13, 14]

[13, 16]

[14, 15]

[14, 14]

[14, 16]

[11, 17] [12, 17][10, 17][9, 17][8, 16][7, 17] [13, 17] [14, 17]

[11, 13] [12, 13][10, 13][9, 13][8, 13][7, 13] [13, 13] [14, 13]

Or others...

37



A Jump-Markov description of 
chemical kinetics

Or others...

38



A Jump-Markov description of 
chemical kinetics

Or others...

39



Reaction Stoichiometry

• The Stoichiometric vector, s, refers to the relative change in the 
population vector after a reaction.

• There may be many different reactions for a given stoichiometry.

40

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

S1 → S1 + S1

S2 → S2 + S1

∅ → S1

s1 = [1, 0]T

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

S2 → S2 + S2

S1 → S1 + S2

∅ → S2

s3 = [0, 1]T

S2 → S1

S1 + S2 → S1 + S1

S2 + S2 → S1 + S2

s4 = [1,−1]T



Reaction Propensities

• The propensity,    , of a reaction is its rate.
•          is the probability that the      reaction will occur in a 

time step of length    .
• Typically, propensities depend only upon reactant populations. 

41

[10, 15] [11, 15]

[11, 14] [12, 14]

[12, 15][9, 15]

[10, 14][9, 14]

w

wµdt µ
th

dt

S1 + S1 → S1

S1 + S2 → S2

S1 → ∅

s2 = [−1, 0]T

k1x2(x1 − 1)/2
k2x1x2

k3x1

w2(x1, x2)



Markov is a forgetful process



Probability reaction will occur in               :

Probability reaction will not occur in               :             

Probability a reaction will not occur in two such time 
intervals                 :

Suppose that,               , then the probability that no reaction will 
occur in the interval              is

Taking the limit as K goes to infinity yields that the probability that            
no reaction will occur in the interval              is

43

[t, t + ∆t) w∆t + O(∆t)2

[t, t + ∆t) 1 − w∆t + O(∆t)2

[t, t + 2∆t)
(

1 − w∆t + O(∆t)2
)2

= 1 − 2w∆t + O(∆t)2

[t, t + τ)
τ = K∆t

(

1 − w
τ

K
+ O(K−2)

)K

[t, t + τ)

lim
k→∞

(

1 − w
τ

K
+ O(K−2)

)K

= exp(−wτ)

Markov Reaction Times



The probability that a reaction will occur in the interval              
is                               .   This is a cumulative distribution.

The density (derivative) of the random number,    , is:

Such a random number is known as an exponentially distributed 
random number.

Notation:

44

FT (τ) = 1 − exp(−wτ)

is an exponentially 
distributed r.v. with 

parameter:     . 

T ∈ EXP(λ) → T

λ

[t, t + τ)

fT (τ) =
1

w
exp(−wτ)

T

Markov Reaction Times



• We have assumed that the system is fully described by the 
population vectors.

• If no reaction occurs, then nothing will have changed.  

• Waiting times must be memoryless random variables.

• No matter where we cut and scale the distribution, it must 
always looks the same.

45
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cut

The exponential is the only 
continuous r.v. with this property. 

Markov Reaction Times



Generating Reaction Times

• To generate an exponentially distributed random number, all we 
need is a uniform random number generator.

• Find the cumulative distribution,

• Generate uniform random number, 

• Find intersection where              :

• This is the time of the next reaction.

46

time (s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 1 − exp(−λt)

F (t) = 1 − exp(−λt)

F (t) = r

r ∈ U[0, 1]

τ =
1

λ
log

1

1 − r



The (Chemical) Master Equation
(Forward Kolmorogrov Equation)



p(x, t + dt)− p(x, t) = −p(x, t)
∑

k

wk (x)dt +
∑

k

p(x− sk , t)wk (x)dt +O(dt2)

Rk fires once
Rk reaction
away from x

at x No reaction fires

more than one
reaction in dt

The Chemical Master Equation 

p(x, t + dt) = p(x, t)



1−
∑

k

wk(x)dt +O(dt2)





+
∑

k

p(x− sk, t)




∑

k

wk(x)dt +O(dt2)



 +O(dt2)

Prob. that no reactions fire in [t, t + dt] = 1−∑
k wk(x)dt +O(dt2)

Prob. that reaction Rk fires once in [t, t + dt] = wk(x)dt +O(dt2)
Prob. that more than one reaction fires in [t, t + dt] =O(dt2)

The Chemical Master Equation

dp(x, t)

dt
= −p(x, t)

∑

k

wk(x) +
∑

k

p(x− sk, t)wk(x)

Slide Contributed by Mustafa Khammash



Example: Transcription and degradation of mRNA



γ

k

N

Degradation: Probability a single mRNA
is degraded in time dt is nγdt

RNA Copy Number as a Random Variable

φ

DNA

mRNA
mRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
is transcribed in time dt is krdt

n− 10 1 2 n n + 1.....

k k k k

(n + 1)γnγγ

.....

k k

(n− 1)γ2γ 3γ

Slide Contributed by Mustafa Khammash



Slide Contributed by Mustafa Khammash

n− 10 1 2 n n + 1.

k k k k

(n + 1)γnγγ

.

k k

(n− 1)γ2γ 3γ

Find p(n, t), the probability that N(t) = n.

P (n, t + dt) = P (n− 1, t) · kdt

+ P (n + 1, t) · (n + 1)γdt

+ P (n, t) · (1− kdt)(1− nγdt)

Prob.{N(t) = n− 1 and mRNA created in [t,t+dt)}

Prob.{N(t) = n + 1 and mRNA degraded in [t,t+dt)}

Prob.{N(t) = n and
mRNA not created nor degraded in [t,t+dt)}

P (n, t + dt)− P (n, t) = P (n− 1, t)kdt + P (n + 1, t)(n + 1)γdt− P (n, t)(k + nγ)dt

+O(dt2)

Dividing by dt and taking the limit as dt→ 0

d

dt
P (n, t) = kP (n− 1, t) + (n + 1)γP (n + 1, t)− (k + nγ)P (n, t)

The Chemical Master Equation

Key Question:



Slide Contributed by Mustafa Khammash

We look for the stationary distribution

From the Master Equation ...

n = 0 kp(0) = γp(1)

...

mRNA Stationary Distribution

P (n, t) = p(n) ∀t

(k + nγ)p(n) = kp(n− 1) + (n + 1)γp(n + 1)

The stationary solution satisfies: d
dtP (n, t) = 0

kp(1) = 2γp(2)

n = 2 kp(2) = 3γp(3)

n = 1

kp(n− 1) = nγ p(n)



p(n) =
k

γ

1

n
p(n− 1)

=

(
k

γ

)2 1

n

1

n− 2
p(n− 2)

...

=

(
k

γ

)n 1

n!
p(0)

kp(n− 1) = nγ p(n) We can express p(n) as a function of p(0):

p(n) = e−aan

n!

We can solve for p(0) using the fact
∞∑

n=0
p(n) = 1

⇒

Poisson Distribution

1 =
∞∑

n=0

(
k

γ

)n 1

n!
p(0)

= ek/γ p(0) p(0) = e−k/γ

a =
k

γ

-1

Slide Contributed by Mustafa Khammash



We can compute the mean and variance of the Poisson RV N̄ with
density p(n) = e−aan

n! :

µ = E[N̄ ] =
∞∑

n=0
np(n) = e−a

∞∑

n=0
n

an

n!
= a

The second moment

E[N̄2] =
∞∑

n=0
n2p(n) = a2 + a

Therefore,

σ2 = E[N̄2]− E[N̄ ]2 = a

mean = variance = a

The coefficient of variation Cv = σ/µ is

Cv =
1
√

a
=

1
√

µ

Slide Contributed by Mustafa Khammash



a=500
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The Relationship of Deterministic to Stochastic 
Biochemical Processes.



dΦA

dt
= −k1ΦAΦB − k2ΦA

dΦA

dt
= −k1ΦAΦB + k2ΦA

dΦA

dt
= k1ΦAΦB

Example:

k1

k2

or

Relationship of Stochastic and 
Deterministic Descriptions

A + B −→ C

A −→ B

dΦ

dt
= Sf(Φ) where

S =




−1 −1
−1 1
1 0



 , f(Φ) =

[
k1ΦAΦB

k2ΦA

]B

C

Given N species S1, . . . ,SN and M elementary reactions. Let Φi := [Si].

A deterministic description can be obtained from mass-action kinetics:

dΦ

dt
= Sf(Φ)

where f(·) is at most a second order monomial. It depends on the type
of reactions and their rates.



Define XΩ(t) = X(t)
Ω .

Question: How does XΩ(t) relate to Φ(t)?

Fact: Let Φ(t) be the deterministic solution to the reaction rate equa-
tions

dΦ

dt
= Sf(Φ), Φ(0) = Φ0.

Let XΩ(t) be the stochastic representation of the same chemical sys-
tems with XΩ(0) = Φ0. Then for every t ≥ 0:

lim
t→∞

sup
s≤t

∣∣∣XΩ(s)−Φ(s)
∣∣∣ = 0 a.s.

Ω

Relationship of Stochastic and 
Deterministic Descriptions

Slide Contributed by Mustafa Khammash



φ, or XΩ = X/Ω

k(x)

γ0x
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Ω =1

Ω = 10
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100
Ω =3

0 10 20 30 40 500

50

100φ
,

or
X

Ω
=

X
/Ω

time(s)

w1(X) = Ωγ0X/Ω = γ0X

w2(X) = Ω
(

20 + 40
(X/Ω)10

4010 + (X/Ω)10

)

Stochastic 

w1(φ) = γ0x

w1(φ) =
(

20 + 40
φ10

4010 + φ10

)

Deterministic 
2



Moment Computations

• Affine Propensity 
• Moment Closures



Moment Computations

For the first moment E[Xi], multiply the CME by xi

and sum over all (x1, . . . , xN) ∈ NN

For the second moment E[XiXj], multiply the CME by xixj

and sum over all (x1, . . . , xN) ∈ NN

Let w(x) = [w1(x), . . . , wM(x)]T

In matrix notation:

dE[X]

dt
= SE[w(X)]

dE[XXT ]

dt
= SE[w(X)XT ] + E[w(X)XT ]TST + S{diagE[w(X)]}ST



These are linear ordinary differential equations and can be easily solved!

Affine Propensity

Suppose the propensity function is affine:

w(x) = Wx + w0, (W is N ×N , w0 is N × 1)

Then E[w(X)] = WE[X]+w0, and E[w(X)XT ] = WE[XXT ]+w0E[XT ].

This gives us the moment equations:

d

dt
E[X] = SWE[X] + Sw0 First Moment

d

dt
E[XXT ] = SWE[XXT ] + E[XXT ]WTST + S diag(WE[X] + w0)S

T

+ Sw0E[XT ] + E[X]wT
0ST Second Moment

Slide Contributed by Mustafa Khammash



Affine Propensity (cont.)

Define the covariance matrix Σ = E[(X − E[X])(X − E(X)]T ].
We can also compute covariance equations:

d

dt
Σ = SWΣ + ΣWTST + S diag(WE[X] + w0)S

T

Steady-state Case
The steady-state moments and covariances can be obtained by solving
linear algebraic equations:

Let X̄ = lim
t→∞

E[X(t)] and Σ̄ = lim
t→∞

Σ(t).

Then

SWX̄ = −Sw0

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0

Slide Contributed by Mustafa Khammash



Fluctuations Arise from Noise Driven Dynamics 

Define A = SW , and B = S
√

diag(WX̄ + w0).
The steady-state covariances equation

SW Σ̄ + Σ̄WTST + S diag(WX̄ + w0)S
T = 0

becomes

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a
output of the linear dynamical system

ẏ = Ay + Bω

where ω is a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

dy = Ay dt + B dWt

where Wt is Brownian motion. This is also called Ornstein-Uhlenbeck

process. Slide Contributed by Mustafa Khammash



Example: Gene Expression



X1(t) is # of mRNA; X2(t) is # of protein

W w0

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

Application to Gene Expression
Reactants

R1 : φ −→ mRNA

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

[
1 −1 0 0
0 0 1 −1

]

w(X) =





kr

γrX1

kpX1

γpX2




=





0 0
γr 0
kp 0
0 γp





[
X1

X2

]

+





kr

0
0
0





Stoichiometry and Propensity

kr

γr

kp

γp



A = SW =

[
−γr 0
kp −γp

]

, Sw0 =

[
kr

0

]
Steady-State Moments

Steady-State Covariance

X̄ = −A−1Sw0 =





kr
γr

kpkr
γpγr





Σ̄ =





kr
γr

kpkr
γr(γr+γp)

kpkr
γr(γr+γp)

kpkr
γpγr

(1 + kp
γr+γp

)





BBT = S diag(WX̄ + w0)ST =




2kr 0

0 2kpkr
γr





The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.



Coefficients of Variation

C2
vr =

1
kr
γr

=
1

X̄1

C2
vp =

1
krkp
γrγp

(

1 +
kp

γr + γp

)

=
1

X̄2

(

1 +
kp

γr + γp

)

Large mean does not imply small fluctuations!

Question: Does a large X̄2 imply a small Cvp?

C2
vp =

1
krkp
γrγp

(

1 +
kp

γr + γp

)

≥
1

krkp
γrγp

(
kp

γr + γp

)

=
γrγp

kr
·

1

γr + γp

X̄2 = krkp
γrγp

, which can be chosen independently from Cvp.
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Moment Computations

• Affine Propensity 
• Moment Closures 



Moment Closures.

• When Second and Higher order terms exist in the propensity functions, 
each moment depends upon higher moments.
‣ For example, if                               , then

• The first moment depends upon the second; the second upon the third; 
and so on.

• Moment closures are approximations that attempt to remove this 
dependence.



Moment Closures.



Gaussian Moment Closure

• If one assumes that the distributions are Gaussian, then the closure is 
simple: 

• which yields:

• Higher moments are easy to derive with a moment generating function:



Many other closures are possible:

• If one assumes that the distributions are Log-Normal, a different closure 
is used:

• One of the most common closures is the Linear Noise Approximation.

• In this, all moments are written in terms of themselves and lower 
moments:

‣ the mean is set equal to the deterministic process.
‣ the second moments are assumed to be gaussian, and depend upon the mean 

and itself.



Noise Suppression and Exploitation (Examples)

• Feedback for Noise Suppression
• Stochastic Focussing
• Stochastic Switches



X1(t) is # of mRNA; X2(t) is # of protein

W w0

Noise Attenuation through Negative Feedback
Reactants

R2 : mRNA −→ φ

R3 : mRNA −→ protein + mRNA

R4 : protein −→ φ

Reactions

S =

[
1 −1 0 0
0 0 1 −1

]
Stoichiometry and Propensity

kr

γr

kp

γp

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

kr = k0 − k1 · (# protein)

w(X) =





k0 − k1X2

γrX1

kpX1

γpX2




=





0 −k1

γr 0
kp 0
0 γp





[
X1

X2

]

+





k0

0
0
0





R1 : φ −→ mRNA



BBT = S diag(WX̄ + w0)ST =

[
k0 + γrµr − k1µp 0

0 kpµr + γpµp

]

The steady-state covariances equation

AΣ̄ + Σ̄AT + BBT = 0 Lyapunov Equation

can be solved algebraically for Σ̄.

Steady-State Moments

Steady-State Covariance

A = SW =

[
−γr −k1

kp −γp

]

, Sw0 =

[
k0

0

]

X̄ = −A−1Sw0 =





k0
γr

1+
k1kp
γpγr

k0kp
γrγp

1+
k1kp
γpγr





=:

[
µr

µp

]

Σ̄22 = σ2
p =

[
1− φ

1 + bφ
·

b

1 + η
+ 1

]

µp where φ =
k1

γp
, b =

kp

γr
, η =

γp

γr



Feedback vs. No Feedback

γp

kr

kp

γr

φ

φ

DNA

mRNA

protein

k0 − k1 · (# protein)

γp

kp

γr

φ

φ

DNA

mRNA

protein

Mean

Variance

µ∗
p µ∗

p

[
1− φ

1 + bφ
·

b

1 + η
+ 1

]

µ∗p where φ =
k1

γp

[
b

1 + η
+ 1

]

µ∗
p

Protein variance is always smaller with negative feedback!

< 1

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: µFB
p = µNFB

p =: µ∗
p

This may be achieved by choosing k0 = kr + k1µNFB
p .

no feedback feedback



γp = γr = 1 kp = 10;
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Note that these distributions are NOT Gaussian.



Exploiting the Noise: 
Failure of the linear noise approximation

•  Noise enhances signal! 
Johan Paulsson , Otto G. Berg , and Måns Ehrenberg, PNAS 2000

stochastic

deterministic
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kq 1φ −→ P −→ φ

n is #S
K = kp/ka

From Jensen’s Inequality:

E[q] = E

[
1

1 + n
ΩK

]

≥
1

1 + E[n]
ΩK

q =
1

1 + n
ΩK

may be approximated by

convex


